
Internship Report

Ishir Roongta

Supervised by:

Soulaimane Berkane, UQO

1

Ishir Roongta

Contents

1 Introduction 4

2 Internship Timeline 4

2.1 Week 1-4 . 4

2.2 Week 5-8 . 4

2.3 Week 9-12 . 5

3 Theoretical Setup 5

3.1 Background . 5

3.2 Problem Formulation . 5

3.3 State Estimation and Lyapunov Approach . 7

3.4 Challenges with the Remaining terms . 9

4 Hardware Setup 9

4.1 Background . 9

4.2 Crazyflie Suite . 10

4.3 Positioning Systems . 10

4.3.1 Lighthouse Positioning System . 10

4.3.2 Loco Positioning System . 11

5 MATLAB Implementation 12

6 Future Work 13

2

Ishir Roongta

Preface

This internship report is made for the project done in the summer of 2022. The internship was part of the

MITACS Globalink Research Internship Program, and the project supervisor was Dr. Soulaimane Berkane

of Université du Québec en Outaouais, Ottawa, Canada. Throughout the 12 weeks period of the internship,

the intern was required to review literature, set up the testing hardware testing environment, develop

new theories and work on MATLAB implementation in addition to regular interaction with the supervisor.

Following is the compilation of the above-said work. On a personal level, this internship presented me

with multiple challenging tasks, each of them being a great learning experience. This opportunity has been

immensely helpful in my academic journey toward a career in Robotics.

I would genuinely like to thank my project supervisor for his constant support and guidance throughout

the internship.

3

Ishir Roongta

1 Introduction

With the rise of practical applications of multi-agent systems in areas like surveillance, disaster management,

delivery systems, and warehouse management, one of the very interesting challenges to overcome is the

dependency on the full range of information to localize the agents in an autonomous system. A full range of

information is not always guaranteed in such scenarios during which the multi-agent system should adapt

using cooperative localization techniques. This involves sharing information between the agents, much like

a traditional autonomous full swarm.

Figure 1: Cooperative Localization

This is precisely what we aim to explore in this project. We want to comment on the functionality of

a multi-agent system (agents being crazyflie drones here) that has less than conventional information to

localize each of the agents and must rely on sharing information to some level to make up for that missing

measurement. We then want to determine the local region if any, in which this shared system would be viable.

With this background, the following internship objective was proposed:

Approaching the problem of co-operative localization in a multi-UAV system using less than the traditional

amount of UWB modules.

2 Internship Timeline

2.1 Week 1-4

The tasks for the first four weeks of the internship were to familiarize myself with the crazyflie suite and

go through the tutorials and documentation on the BitCraze website diligently. The problem of multi-UAV

localization was discussed, and in order to have a precise testing environment for the multi-crazyflie setup,

we experimented with the Lighthouse Positioning Deck and the Loco Positioning Deck of the Crazyflie

system.

Parallelly literature review was done on topics such as State Estimation using shared information, Luen-

berger Observer for such cases, Lyapunov Functions, Extended Kalman Filters, Basics of Linear Algebra and

Matrix Properties

2.2 Week 5-8

On the theory side, we worked on the observer design to check the viability of the system and to answer

the question would the limited information present be sufficient to localize both agents. This was ensured

through the Lyapunov Stability Criterion. More on this will be discussed in the relevant section.

4

Ishir Roongta

On the hardware side of things, flight tests were conducted to log parameters like gyroscope data and

UWB ranges distances from the anchors positioned at known locations. Python scripts were tested as well to

fly a single and double crazyflie agent setup.

2.3 Week 9-12

The focus for the remaining period of the internship was to continue the design of our observer and simul-

taneously setup a MALTAB pipeline to test the Luenberger observer against the reference data from the

Lighthouse Positioning system.

After completing the hardware setup for the testing environment, efforts were made to understand how

information is shared inside the Crazyflie firmware as sharing information between the agents was required.

Sample trajectories were taken to generate input logs for the Matlab implementation of the designed Luenber

Observer.

Realizing the absence of a shared messages capability in the Crayflie firmware, the last week was spent

gathering data and attempting to self-implement this feature.

3 Theoretical Setup

In the subsequent sections, we talk about the theory involved and the problem formulation for the project.

Please consider the topics discussed below are in brief.

3.1 Background

Before moving on to the problem formulation, we discuss the requirement of four UWB modules or, in

essence, four measurements to localize an agent in a 3D space. The proof for this is trivial, and it can be seen

geometrically that three spheres intersect in almost two distinct points in 3D space, and a fourth sphere or a

fourth measurement is required to attain a unique point.

Figure 2: Working of a traditional GPS

This can also be understood in terms of position and time. In a traditional GPS, measurements are taken

from four different satellites to calculate the four variables which are: x, y, z, time.

3.2 Problem Formulation

We start with the simplest form of a multi-agent system. Consider a two-crazyflie setup. Now each of these

would require four UWB anchors to localize themselves, but in our setup, we will consider only three anchors

in totality. Further, among these three anchors, one would be unique to each of the crazyflie and the other

5

Ishir Roongta

would be shared. Note: Here, unique would mean that the range measurement from that anchor to a crazyflie

would be available to that specific crazyflie only. While shared means range measurement for both the

crazyflies is present for this anchor.

Below is a figure for reference of the entire setup:

• - ai is the anchor with i being the id number.

• - pi is the pose of i t h crazyflie.

• - di j is the range measurement between the i t h drone and the j t h anchor.

Figure 3: Problem Setup

The dynamics equations followed by the agents are:

ṗ1 = v1

ṗ2 = v2

(1)

Now we define the range measurements and their availability with respect to the different crazyflie agents:

• Range information that we have for the first target crazyflie with a3 being our shared anchor:

d11 = ||p1 −a1||
d13 = ||p1 −a3||
q12 = ||p1 −p2||

(2)

• Similarly, for the second crazyflie we have:

d22 = ||p2 −a2||
d23 = ||p2 −a3||
q21 = ||p2 −p1||

(3)

In our setup, it is important to note that the two crazyflies share their pose estimate and the range from

the common anchor with each other.

6

Ishir Roongta

3.3 State Estimation and Lyapunov Approach

We start with the following states to estimate from the dynamics equations: (where χ is the correction term

for the estimated state)

p̂1 = v1 +χ

p̂1 = v1 +χ
(4)

Our error estimates accordingly become:

p̃1 = p1 − p̂1

p̃2 = p2 − p̂2

(5)

Now we extract the following information from the above problem setup:

d 2
23 = ||p2||2 +||a3||2 −2pT

2 a3

d 2
13 = ||p1||2 +||a3||2 −2pT

1 a3

q2
21 = ||p1||2 +||p2||2 −2pT

1 p2

(6)

From there, we get our common measured value which is: (here yi j means i t h measurement for the j t h

drone)

y22 = d 2
23 +d 2

13 −q2
21 −2||a3||2 =−2aT

3 (p1 +p2)+2pT
1 p2 = y21 (7)

For the individual drones, we have the following measured values:

y12 = d 2
22 −d 2

23 +||a3||2 −||a2||2 = 2(a3 −a2)T p2

(a3 −a2)T =C T
23

y11 = d 2
11 −d 2

13 +||a3||2 −||a1||2 = 2(a3 −a1)T p1

(a3 −a1)T =C T
13

(8)

Now we can write the correction terms in equation (4) as: (here ki j are controller gains where j represents

the drone id)

˙̂p1 = v1 +k11[y11 −2cT
13p̂1]+k21[y21 +2aT

3 (p̂1 + p̂2)−2p̂1
T p̂2]

˙̂p2 = v2 +k12[y12 −2cT
23p̂2]+k22[y22 +2aT

3 (p̂1 + p̂2)−2p̂1
T p̂2]

(9)

We take the controller gains of the following form in an attempt to attain some kind of symmetry in our

state equations:

k11 = γ1 ∗C13

k21 = γ1 ∗ (p̂2 −a3)

k12 = γ2 ∗C23

k22 = γ2 ∗ (p̂1 −a3)

(10)

7

Ishir Roongta

The error estimates in equation (5) now can be written as:

˙̃p1 =−2k11[cT
13p̃1]−2k21[−aT

3 (p̃1 + p̃2)+ p̃1
T p2 + p̂1

T p̃2]

˙̃p2 =−2k12[cT
23p̃2]−2k22[−aT

3 (p̃1 + p̃2)+ p̃2
T p1 + p̂2

T p̃1]
(11)

We perform the following rearrangements in our equations. We begin with the terms:

−aT
3 ([p1 − p̂1]+ [p2 − p̂2])+pT

1 p2 − p̂1
T p̂2 (12)

For the first (p1) drone:

⇒−aT
3 (p̃1 + p̃2)+pT

1 p2 − p̂1
T (p2 − p̃2)

⇒−aT
3 (p̃1 + p̃2)+ (pT

1 − p̂1
T)p2 + p̂1

T p̃2)

⇒−aT
3 p̃1 −aT

3 p̃2 + p̃1
T p2 + p̂1

T p̃2)

⇒−aT
3 p̃1 −aT

3 p̃2 +pT
2 p̃1 + p̂1

T p̃2)

⇒ (p2 −a3)Tp̃1 + (p̂1 −a3)Tp̃2

(13)

For the second (p2) drone we rewrite the original terms as:

−aT
3 (p̃1 + p̃2)+pT

2 p1 − p̂2
Tp̂1 (14)

Then we rearrange as follows:

⇒−aT
3 (p̃1 + p̃2)+pT

2 p1 − p̂2
T (p1 − p̃1)

⇒−aT
3 (p̃1 + p̃2)+ (pT

2 − p̂2
T)p1 + p̂2

T p̃1)

⇒−aT
3 p̃1 −aT

3 p̃2 + p̃2
T p1 + p̂2

T p̃1)

⇒−aT
3 p̃1 −aT

3 p̃2 +pT
1 p̃2 + p̂2

T p̃1)

⇒ (p̂2 −a3)Tp̃1 + (p1 −a3)Tp̃2

(15)

Using this simplified form, we put in the controller gains in equation (11), which gives us:

˙̃p1 =−2γ1[c13cT
13]p̃1 −2γ1(p̂2 −a3)[(p2 −a3)T p̃1 + (p̂1 −a3)T p̃2]

˙̃p2 =−2γ2[c23cT
23]p̃2 −2γ2(p̂1 −a3)[(p̂2 −a3)T p̃1 + (p1 −a3)T p̃2]

(16)

Now before further simplification, we observe that we have terms that either contain just p̃1 or just p̃2.

These terms with isolated error estimates are easier to handle while designing the Lyapunov function while

the terms with both of them clubbed are difficult to manage and for further reading are termed as " extra

terms ".

Now we introduce M1 and M2 as follows: (extra terms are written in bold)

M1 = c13cT
13 + (p2 −a3)(p2 −a3)T

M2 = c23cT
23 + (p1 −a3)(p1 −a3)T

˙̃p1 =−2γ1M1p̃1 −2γ1(p̂2 −a3)(p̂1 −a3)T p̃2 +2γ1p̃2(p2 −a3)Tp̃1

˙̃p2 =−2γ2M2p̃2 −2γ2(p̂1 −a3)(p̂2 −a3)T p̃1 +2γ2p̃1(p1 −a3)Tp̃2

8

Ishir Roongta

We begin by taking our Lyapunov function of the following form and differentiating it:

V = 1

2
||p̃1||2 + µ

2
||p̃2||2

V̇ = p̃1
T ˙̃p1 +µp̃2

T ˙̃p2

(17)

Putting the values of p̃1 and p̃2 in the Lyapunov we get:

V̇ = p̃1
T [−2γ1M1]p̃1 + p̃2

T [−2µγ2M2]p̃2 + p̃1
T [−2γ1(p̂2 −a3)(p1 −a3)T]p̃2

+p̃2
T [−2µγ2(p̂1 −a3)(p2 −a3)T]p̃1 +extr ater ms

(18)

Comparing this expansion with the form:

[
p̃1

T p̃2
T
][

P11 P12

P21 P22

][
p̃1

p̃2

]
= p̃1

T P11p̃1 + p̃2
T P21p̃1 + p̃1

T P12p̃2 + p̃2
T P22p̃2 (19)

we get the following value for our P matrix:

P11 =−2γ1M1

P12 =−2γ1(p̂2 −a3)(p̂1 −a3)T

P21 =−2µγ2(p̂1 −a3)(p̂2 −a3)T

P22 =−2µγ2M2

3.4 Challenges with the Remaining terms

Terms remaining to deal with:

V̇ = p̃1
T 2γ1p̃2(p2 −a3)T p̃1 +µp̃2

T 2γ2p̃1(p1 −a3)T p̃2 (20)

The challenge with these is we need to manipulate our state equations in such a way by either introducing

a new state variable or redesigning the Lyapunov, that these terms are eliminated, and we get an isolated P

matrix which can then follow the results of positive definiteness in the particular form expressed above.

4 Hardware Setup

4.1 Background

The choice of drone that we worked with was the Crazyflie 2.1 by Bitcraze. The advantages are it’s lightweight,

easily customizable firmware and open-source flying development platform. The customizable options of

various decks, which can be attached to the base crazyflie make it extremely useful as we could test out

different positioning systems for their accuracy. The crazyflie client provides an easy-to-learn user experience

as well. For the final testing environment, we need to fix the UWB modules (anchors) at appropriate locations

which do not have any obstruction of view and are about 5-10cm away from the ground, walls, and the roof

of the room. More about the positioning systems are discussed in the appropriate subsection below.

9

Ishir Roongta

4.2 Crazyflie Suite

We used the crazyflie system along with the Crayflie PA radio USB module which one can connect to their

computer system. We installed the suggested Crazyflie VM; otherwise, the firmware can be compiled in

Ubuntu 20 and newer versions.

Figure 4: Assembled Crazyflie

4.3 Positioning Systems

We used two positioning systems available in the Crazyflie suite, namely Lighthouse positioning system and

Loco positioning system. The plan was to use the data from the lighthouse positioning system as our ground

truth and reference trajectory. This option was taken because of the unavailability of a more accurate motion

capture setup in the lab due to renovations at the time.

4.3.1 Lighthouse Positioning System

This system was based on optical beam, which allowed the Crazyflie agent to calculate its position with

decimeter accuracy and millimeter precision. It had two base stations that contained periodically spanning

optical beams, which are further received by the photo-diode (light receiver) on the Crazyflie equipped with

the Lighthouse deck.

Figure 5: Source: Bitcraze Documentation

It is important to note that in order to measure the pose and orientation just from the range measurements

provided by these lighthouse decks, the Crazyflie needs to know the position and orientation of these base

stations.

A successful setup was created using this positioning system (video of the setup here), and flight tests were

conducted to log different data like the pose, distance measurements, gyro measurements, and information

from the IMU. After this, we moved to the Loco system to set up the testing part of the environment.

10

https://drive.google.com/file/d/1Y7hXn4P9xxzHiW_B8NA-bwqFlKp40OJ3/view?usp=share_link

Ishir Roongta

Figure 6: Lighthouse Setup

4.3.2 Loco Positioning System

In it’s essence, it is a local positioning system that is based on the Ultra Wide Band Radio. This can be thought

of as a mini GPS, and each of the UWB modules act as a satellite with known pose and orientation which

allows the crazyflie to calculate it’s position and orientation from the range measurements from each of these

anchors.

Figure 7: Source: Bitcraze Documentation

Along with proper positioning of the anchors, a Loco deck is installed to the Crazyflie agent to allow

estimation of absolute position, which can be further used for autonomous flight. Flight tests were conducted

to make the agent move in a square of a defined length.

Figure 8: UWB Modules Setup

Calibrations for the flight tests: Before any flight test, we keep the crazyflie in the marked center (the

assumed origin from where we have measured all the positions of the anchors). We turn on the crazyflie

11

Ishir Roongta

client which communicates to the agent via the PA radio module, and we check if the crazyflie is receiving

data from the anchors. This is indicated by the green boxes under the Loco positioning tab in the CF client.

We feed in the positions of the anchors through the client, which is measured from the assumed origin. To

check everything, one should manually pick the Crazyflie drone up and try to move it near any anchor, and

check the status in the client for the same. Also, it is important to place the Crazyflie in the correct orientation

in the x-y plane.

After these steps, we can run the python script for autonomous flight.

Figure 9: Python script to run a Swarm Sequence

5 MATLAB Implementation

A Luenberger Observer-based model was implemented in Simulink to create a pipeline to generate trajectories

from the data logs that we collect from flight tests. The entire codebase can be found at the GitHub repository

linked here.

Figure 10: Loading the logging data

12

https://github.com/isro01/mitacs_matlab_codes

Ishir Roongta

Figure 11: Part of the Simulink Model for Drone 1

6 Future Work

Future work would incorporate the following tasks:

• Handling the extra terms in the theoretical proof by either choosing a different Lyapunov Function or

adding another state which somehow manipulates the equations to eliminate such terms.

• Finding a means of communication between the crazyflies so that they can share their position with

each other.

• After the above issues have been resolved, we can work towards implementing it on a multi-agent

system of two crazyflies and extend it to multiple crazyflie agents as well.

• It is very exciting to think about this multi-agent system in other similar scenarios with some arbitrary

number of UWB modules being unique and some being shared and their impact on the cooperative

localization pipeline that we have.

13

	Introduction
	Internship Timeline
	Week 1-4
	Week 5-8
	Week 9-12

	Theoretical Setup
	Background
	Problem Formulation
	State Estimation and Lyapunov Approach
	Challenges with the Remaining terms

	Hardware Setup
	Background
	Crazyflie Suite
	Positioning Systems
	Lighthouse Positioning System
	Loco Positioning System

	MATLAB Implementation
	Future Work

